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Figure 1: Geometric Reconstruction and Rendering. Examples from a challenging scene [[11]]
showing our Eve3D method’s accurate geometry and appearance. Left: Normal maps highlight
superior surface reconstruction over 2DGS [[18]] and GOF [53]], particularly on flat surfaces and object
boundaries. Right: Photorealistic view synthesis alongside its detailed depth map rendering.

Abstract

We present Eve3D, a novel framework for dense 3D reconstruction based on 3D
Gaussian Splatting (3DGS). While most existing methods rely on imperfect priors
derived from pre-trained vision models, Eve3D fully leverages these priors by
jointly optimizing both them and the 3DGS backbone. This joint optimization
creates a mutually reinforcing cycle: the priors enhance the quality of 3DGS, which
in turn refines the priors, further improving the reconstruction. Additionally, Eve3D
introduces a novel optimization step based on bundle adjustment, overcoming the
limitations of the highly local supervision in standard 3DGS pipelines. Eve3D
achieves state-of-the-art results in surface reconstruction and novel view synthesis
on the Tanks & Temples, DTU, and Mip-NeRF360 datasets. while retaining fast
convergence, highlighting an unprecedented trade-off between accuracy and speed.

1 Introduction

Dense 3D scene reconstruction is a crucial task in computer vision and graphics, supporting ap-
plications ranging from virtual reality and simulating environments to robotic navigation. Recent
breakthroughs in this field draw inspiration from the adjacent literature concerning novel view
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synthesis [32, [22]], which faced a remarkable revolution in the last few years. Initially, Neural Radi-
ance Fields (NeRFs) [32]] were adapted to encode dense 3D surfaces within MLP weights [42} 25];
however, despite their compact representation, these approaches impose prohibitive computational
demands, often requiring hundreds of hours of processing to reconstruct a single scene. More recently,
3D Gaussian Splatting [22] (3DGS) has gained significant attention in the graphics community,
characterized by an optimized rasterizer that facilitates real-time rendering, establishing it as the
current preferred alternative to NeRFs. This has led to the development of numerous 3DGS-based
approaches [18, 155, |6, 29] that deliver promising results and high-fidelity scene reconstructions.
However, despite the efficiency and flexibility of 3DGS and the latest advances, the framework
continues to face significant limitations that hinder its broader application for 3D reconstruction task.

First and foremost, 3DGS in its original formulation is unsuited for this purpose, as Gaussian
primitives rarely fit accurately to true surface geometries [16]. This limitation derives from two
critical factors: the inherent independence of Gaussian primitives, which operate without contextual
awareness, and the sole reliance on image reconstruction losses during training. While this approach
excels at novel view synthesis, it often fails at properly modeling the real 3D geometry of the observed
scene. Second, the accuracy of 3DGS heavily relies on a proper initialization strategy for seeding
Gaussian primitives. Despite its efficiency and widespread adoption, COLMAP’s [35]] reliance on
local feature makes it vulnerable to challenging scenarios such as textureless regions and repetitive
patterns, resulting in structural distortions, blurring, and under-reconstructed areas.

To address these shortcomings, recent 3D reconstruction pipelines built upon 3DGS [[18, 155} 6] 29]]
have incorporated additional scene priors from pre-trained vision models [48 [58] 14} 15, [12} [1} 15}
53]. Among these supplementary signals, depth and surface normals have proven most effective,
significantly enhancing reconstruction quality in traditionally challenging scenarios such as textureless
regions. On the one hand, although vision models can reason both locally and globally over their
inputs, they are constrained by the limited amount of images they can process simultaneously — e.g.,
typically a single frame [48) [12} |1 [15 53], a stereo pair [58| 44} 3]], or at most about ten images
[4}15]. This limitation restricts these models to analyzing only localized portions of a scene when
extracting priors. Furthermore, despite their training on large-scale datasets ranging from hundreds of
thousands [4}, 5] to several million images [48]], the priors they predict still suffer from inaccuracies.
These dual constraints create sub-optimal supervision for 3DGS, tampering with the optimization
process and ultimately limiting the final 3D reconstruction accuracy.

In this paper, we introduce Eve3D, a novel 3D reconstruction framework built upon 3D Gaussian
Splatting, specifically designed to overcome these limitations. Firstly, Eve3D unlocks the full
potential of vision models by rendering synthetic rectified stereo pairs through 3DGS and applying
state-of-the-art stereo foundation models to obtain geometric priors. These priors are then refined
through joint optimization alongside the 3DGS model itself. This joint optimization strategy works
by back-propagating gradients through both the depth rendered by 3DGS and the predicted depth
priors, with the latter treated as learnable parameters throughout the process. Secondly, we propose a
local bundle adjustment strategy that maintains global consistency across co-visible frames during
each forward optimization. This approach overcomes 3DGS’s inherent limitation in simultaneously
rasterizing and optimizing multiple frames — a constraint imposed by computational complexity. This
allows Eve3D to achieve unprecedented accuracy, as demonstrated in Fig. [T}

Eve3D is trained and evaluated over popular benchmarks for 3D reconstruction, including DTU [9]
and Tanks and Temples [24], achieving state-of-the-art accuracy on both datasets. In particular, on
the latter, this is done in just 20 minutes, while it takes only ~ 1 GPU hours to push the accuracy to
the upper bound. In summary, the main contributions of this paper are:

¢ We introduce Eve3D, a novel framework for dense 3D reconstruction based on 3DGS,
setting a new state-of-the-art in the field while maintaining efficient training time.

* We develop an improved supervision paradigm for 3DGS used to train Eve3D, which treats
external priors as learnable parameters and optimizes them jointly with the 3DGS model
during training.

* We introduce a local bundle adjustment to better enforce multi-view consistency during each
optimization step, overcoming one of the main limitations of 3DGS-based frameworks.



2 Related Work

Neural Scene Representations. Neural scene representations have revolutionized 3D reconstruction
and rendering. NeRF [32] pioneered this direction with continuous volumetric functions modeled
by MLPs, though at high computational cost. More recently, 3DGS [22] introduced an explicit
representation using 3D Gaussian primitives with efficient rasterization-based rendering, achieving
superior quality and real-time performance. Despite successful applications in large-scale scene
reconstruction [23| 28} 26], SLAM systems [47, 21} 137,163, 40], dynamic scene modeling [49 150,
46, 27], Al-generated content [38, (8134} 61]], and autonomous driving [62} 130} 60], both NeRF and
3DGS focus primarily on appearance rather than geometry, resulting in poorly defined surfaces.

Neural Surface Reconstruction. To address these limitations, several methods have extended neural
rendering for accurate surface reconstruction. NeuS [42]] and VoISDF [52] represent surfaces as
zero-level sets of signed distance functions without mask supervision. Neuralangelo [25] enhances
detail with multi-resolution hash grids and numerical gradients, while NeuralWarp [10] improves
consistency through patch warping. These implicit approaches produce high-quality surfaces but
require significant computational resources and long optimization times.

Surface Reconstruction with Gaussian Splatting. 3DGS’s efficiency has inspired many surface
reconstruction methods. SuGaR [16] introduced regularization for surface-aligned Gaussians, en-
abling Poisson reconstruction. 2DGS [18]] uses planar disks for surface modeling, while Gaussian
Surfels [9] treats local z-axis as normal direction. GS2Mesh [435]] extracts meshes using TSDF fusion
on depth maps from a pre-trained stereo model, while StereoGS [33] employs self-improving depth
supervision with virtual stereo pairs. Some approaches combine Gaussians with implicit fields: GOF
[55]] derives an opacity field, while GSDF [54] and 3DGSR [31]] integrate 3DGS with signed distance
functions. Others focus on geometric constraints, like PGSR [6] with unbiased depth rendering,
DN-Splatter [41]] with depth/normal priors, and VCR-GauS [7] with view-consistent depth-normal
regularization. GS-Pull [57]] aligns Gaussians to a neural SDF’s zero-level set. Despite progress,
current approaches have limitations with geometric priors - either using external vision model priors
that may be inconsistent [48 58} 4} 5, [12} 1} [15, 53], or applying heuristic constraints that struggle
with complex geometries. Our work jointly optimizes Gaussians and priors in a unified framework,
introducing non-local information flow for better geometric consistency.

3 Method

3.1 Framework Overview

Scene Representation. As illustrated in Fig. [2] our backbone is built over 3D Gaussian Splatting,
which models the scene as a set of Gaussian primitives, each one defined as:

Gi(|pi, 3s) = e*%(m*uﬁTXfl(m*uz’) (1)

with ; € R? and X; € R3*3 being the center and 3D covariance matrix, respectively. The latter can
be decomposed into scaling and rotation matrices S; R; € R3%3;

s = R;S:S] R} )

To better fit surfaces [18} 9], we enforce Gaussians to be flat by minimizing the minimal factor in .S;.
The pixel-wise color C' € R3 is rendered through a-blending:

i—1
C = ZTiaiCia T = H(l — ), (3)
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where « and ¢; € R? are the alpha and view-dependent color. Similarly, properties such as depth and
surface normals can be rendered. Following [6], normals [N are derived from the minimum scale
factor direction n; and camera rotation R.. Depth D are obtained through unbiased rendering [6],
calculated as the intersection between the ray and the plane defined by rendered normals and the
distance map D, where d; = (RT (u; — T..))T (R n;) represents the distance from the plane to the
camera center 1. The two geometric properties follow:
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Figure 2: Overview of our Framework. (a) We generate stereo pairs by rendering from a virtual
camera using 3DGS. (b) A pre-trained stereo network extracts initial depth priors. (c) Our core
contribution: joint optimization of learnable depth priors and 3DGS, enhanced by local bundle
adjustment for geometric and photometric consistency. (d) Final results showing high-quality mesh
reconstruction, accurate depth/normal maps, and high-fidelity novel view synthesis.

While color can be supervised with real images, depth and normals can be supervised using priors
from pre-trained vision models [58. 14,135, [33]) for better optimization.

Priors Computation. Unlike approaches supervising 3DGS with ill-posed monocular depth models
[12]], we use binocular stereo matching for more geometrically consistent priors. Since our
method operates in a standard multi-view setting with a single moving camera rather than a stereo rig,
we exploit 3DGS’s view synthesis to render rectified stereo pairs [I%L M43]). Specifically, for a given

camera pose P;, we define a virtual right camera with pose P7, at a distance b as:

(Tt ,
Pi:(o 1)><P1- with t=(b 0 0)' )

We render a virtual right image and form a stereo pair with the input left image (I;,I7). We then
apply a pre-trained state-of-the-art stereo model — FoundationStereo [44]] in our implementation —
to predict a disparity map, which is converted to depth D* through triangulation. We also derive a
confidence mask M ¢ by computing the consistency check between disparity maps for left and right
views. While effective for assisting 3DGS optimization [33]] and recovering meshes [43]], we argue

that explicitly addressing the noisy nature of these priors is critical to fully exploit their potential.

3.2 Prior-Involved Local Bundle Adjustment

Multi-view consistency is vital for determining accurate surfaces. However, extracting accurate and
detailed surfaces from either Gaussians or vision models presents challenges without multi-view
constraints. This difficulty arises because 3DGS captures depth information through image rendering
supervision, while vision models inherently contain noise and have limited view inputs. To address
this issue, we have developed a local bundle adjustment algorithm that utilizes both rendered and
prior depth maps, enhancing their multi-view consistency to represent surfaces more accurately. In
multi-view pairs, we employ priors at source views, which allows us to incorporate more viewpoints
in a single loop by eliminating the need for depth rendering. For the reference view, we select either
the rendered or prior depth map, depending on the stage of joint optimization (Sec[3.3).

For view V; at the current iteration, we build a factor-graph (V, £) to perform local bundle adjustment.
To balance reconstruction quality and efficiency, rather than optimizing all frames together, we
only select views that overlap with the current view ¢. Specifically, following standard MVS
methods [511, 4] [5]], we determine neighboring views by computing an overlapping score and select
only the top K frames { V]}f{:1 We construct the graph by adding edge connections between the
current view V; and each of its neighboring views V. The underlying optimization principle enforces
both geometric and photometric consistency.



Geometric Consistency. Given learnable depth ﬁi of the current view V;, we first convert it into a
normal map N D, with finite differences as in [[18], and derive the distance map D); as:

Di(p) = Di(p)N'p, (D) K, 'P, ©)
where p is the 2D position on the image plane, p denotes its homogeneous coordinate, and K is the
camera intrinsic matrix. We then map the full set of pixel coordinates P; from the current view V; to
the neighboring view V; through the homography matrix H;:

5 TN E 1
P; = H;;P,, H;; =K;(Ri; — 5. VK O]
where R;; and T;; are the relative rotation and translation from view V; to the neighboring view V.
Similarly, for pixels in the neighboring view V;, we derive the surface normal and distance map from

its learnable depth D; to compute the homography matrix H ;;. By enforcing geometry consistency,
we aim at minimizing the projection error min ®;;, where

@i =|| P — H;Hi; P, || . ®)

Photometric Consistency. This constraint is based on plane patches. For pixels P; in the current
view V;, we map a 7 x 7 pixel patch centered at each pixel p € P; to the neighboring view using the
homography matrix H;;. We aim to minimize the photometric error to zero:

¥;; = (1-NCC(L; (P;),I; (Hij P)), ©

Objective. To account for occlusions between views and noise in depth estimates, following [6], we
model the confidence map to weight the error function W;; and the overall cost function to refine
depth maps of the current view and its neighbors is defined as:

Liva = Aiva Z Wt ()\gq)st + Ap‘I’st) . (10)
(s,t)e€

3.3 Joint Optimization of 3DGS and Priors

Regardless of their source, all model-generated priors inevitably contain noise and inaccuracies.
Rather than treating them as rigid supervision, we jointly optimize both the 3DGS model and
the associated guidance. This creates a mutually beneficial relationship, refining priors through
multi-view consistency while providing improved supervision for the 3DGS representation.

Parameterized Prior. Given a prior depth map D*, we initialize a set of learnable parameters D
with its values. The joint optimization follows a two-phase schedule. Initially (i.e., before iteration
T}joint), we use the original D* to supervise 3DGS and avoid early convergence to poor local minima.
Later, once the 3DGS-rendered depth becomes sufficiently reliable, we switch to optimizing D
jointly with 3DGS parameters through backpropagation, allowing the model to refine both the scene
representation and the the guidance signal simultaneously without degrading their quality.

Local Bundle Adjustment Pre-training. Neural networks that generate prior depth estimates often
do so at very sparse viewpoints, resulting in insufficient multi-view consistency. To address this limi-
tation, before starting the joint optimization (7};y¢), we apply our proposed local bundle adjustment
between the prior depths of different viewpoints, which will provide a multi-view consistent prior
initialization before starting the joint optimization of 3DGS and prior depth.

Confidence Mask Update. As the quality of depth prior gradually improves through the joint
optimization and local bundle adjustment, the initial confidence mask M ¢ may become outdated.
Concurrently, the confidence map computed during local bundle adjustment reflects the quality of the

latest depth prior. Therefore, we update the mask M€ as:
M{ = MV (Wi; >0) forje{1,2,--,K} (11)

For pixels with value O in M¢, ie., low-quality depth prior, it remains possibile for them to be
adjusted to a more accurate position by 3DGS:

Lpuil = Apuii(~ MC)Hﬁ - Ddethl, (12)

where D" denotes the gradient of rendered depth D is detached. When such pixels attain a
sufficiently accurate state and are subsequently classified as confident by local bundle adjustment,
they become eligible to participate in joint optimization and local bundle adjustment, ultimately
contributing to accurate surface reconstruction.



Table 1: Quantitative results of F1 Score on Tanks and Temples. s ' indicate the
absolute, second, and third bests respectively.

Method Barn Caterpillar Courthouse Ignatius Meetingroom Truck Mean 1 Time
g Neus$ [42] 0.29 0.29 0.17 0.83 0.24 0.45 0.38 >24h
2, Geo-Neus [14] 0.33 0.26 0.12 0.72 0.20 0.45 0.35 >24h
K] Neuralangelo [25] 0.70 0.36 0.28 0.89 0.32 0.48 0.50 >128h
3DGS [22] 0.13 0.08 0.09 0.04 0.01 0.19 0.09 20m
SuGaR [16] 0.14 0.16 0.08 0.33 0.15 0.26 0.19 2h
DN-Splatter {411 0.15 0.11 0.07 0.18 0.01 0.20 0.12 1h
g GSurfels [9] 0.24 0.22 0.07 0.39 0.12 0.24 0.21 15m
g, 2DGS (18] 0.36 0.23 0.13 0.44 0.16 0.26 0.30 34m
A GOF 0.51 0.41 0.28 0.68 0.28 0.58 0.46 2h
PGSR 0.66 0.44 0.20 0.81 0.33 0.66 0.52 45m
GS-Pull [57] 0.60 0.37 0.16 0.71 0.22 0.52 0.43 38m
T Eve3D-fast Ours) ~ |~ 0.69 044 7 034"~~~ 082 041"~ 0.62" ]« 056~ © 20m
Eve3D (Ours) 0.70 0.48 0.35 0.83 0.46 0.66 0.58 1.2h

| i ) LR e || L\ LA
Reference Image 2DGS [18] PGSR [6] Eve3D (Ours)
Figure 3: Qualitative Comparison on Tanks and Temples. We visualize the surface normal of
reconstructed 3D meshes for comparison.

3.4 Training Loss

With the prior depth, we apply a single-view prior loss Lgeptp, to regularize the depth and normal
from 3D Gaussians in confident regions weighted by Me:

HD* —I)||17 iter<Tj0im,

Hb — D||1, otherwise. (13)

£depth _ Mc o {

prior

To strengthen the impact on plane surface reconstruction, we also jointly optimize the normals
obtained from 3DGS and the depth prior in confident regions as follows:

normal __ p'rc P(ND*,ND) + P(ND*,N), iter < Tjoint,

Lorior” =M™ O { N p,Np)+T(Np,N), otherwise, (14)

where T'(A, B) denotes the pixel-wise cosine distance (1 — A - B) between normal maps. In

addition, we also use ground-truth color loss £.. [22]], depth-normal consistency loss L4, to encourage

consistency between rendered depth and rotational normal [6, [T8] 53], and scale loss £ [6] to
encourage Gaussians to flatten to planes. The final training loss is:

L= ﬁc + Edn + ﬁs + ﬁpm’or + ﬁlba + ﬁpull- (15)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate on real-world datasets, including object-centric, indoor, and outdoor scenes.
For 3D reconstruction, we use large-scale scenes from Tanks and Temples [24]] and 15 object-centric
scenes from DTU [20]. For novel view synthesis, we use the Mip-NeRF360 dataset [2].

Evaluation Metrics. Following established protocols, we assess reconstruction accuracy using
Chamfer Distance (CD) on DTU [9] and F-score on Tanks and Temples [24], employing the official
evaluation scripts. For novel view synthesis evaluation on Mip-NeRF360, we use standard rendering
quality metrics: PSNR, SSIM [43]], and LPIPS [56].

Baselines. We compare against state-of-the-art methods from two categories: (1) implicit NeRF-
based approaches including NeRF [32]], VoISDF [52], NeuS [42], Geo-Neus [[14], NeuralWarp [10],
and Neuralangelo [25]]; and (2) explicit 3DGS-based frameworks including 3DGS [22], SuGaR [16],
DN-Splatter [41]], GSurfels [9], 2DGS [18], GOF [53], GS2Mesh [43]], PGSR [6]], and GS-Pull [57].



Table 2: Quantitative Results (Chamfer Distance) on DTU. , I, indicate the absolute,
second, and third bests respectively.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean| Time
NeRF 190 1.60 185 058 228 127 147 167 205 1.07 088 253 1.06 1.15 096 1.49 > 12h
5 VoISDF [52] 1.14 126 081 049 125 070 072 129 118 070 0.66 1.08 042 0.61 0.55 0.86 >12h
=, NeusS [42] 1.00 137 093 043 1.10 065 057 148 109 0.83 052 120 035 049 054 0.84 >12h
£ NeuralWarp 049 071 038 038 079 081 082 120 106 0.68 0.66 074 041 0.63 051 0.68 >10h
Neuralangelo [25] | 037 0.72 035 035 0.87 (054 053 129 097 073 047 074 032 041 043 | d0.61 >12h
3DGS [22] 214 153 208 1.68 349 221 143 207 222 175 179 255 153 152 150 1.96 12m
SuGaR 147 133 113 061 225 171 115 163 162 107 079 245 098 088 0.79 1.33 1h
DN-Splatter [41] 1.60 203 142 144 237 211 162 195 1.8 148 1.63 1.82 120 150 140 1.70 30m
«  GSurfels 066 093 054 041 1.06 1.14 085 129 153 079 082 158 045 066 0.53 0.88 1Im
.2 2DGS [18] 048 091 039 039 1.01 083 081 136 127 076 070 140 040 0.76 0.2 0.80 20m
2 GOF [53] 050 082 037 037 112 074 073 118 129 0.68 0.77 090 042 0.66 049 0.74 2h
H GS2Mesh 059 079 070 038 0.78 1.00 069 125 096 0.59 050 068 037 0.50 046 0.68 20m
PGSR 036 057 038 033 078 058 050 108 0.63 059 046 054 030 038 034 0.52 30m
GS-Pull [57] 051 056 046 039 082 067 085 137 125 073 054 139 035 088 042 0.75 22m
" Eve3D (Ours) | 033 047 0327 033 073 058 044 1.00 062 054 043 045 029 038 032] 048  I5m

|
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Figure 4: Qualitative Comparison on the DTU Dataset. Visual comparison of 3D meshes recon-
structed by our approach versus previous methods.

Implementation Details. Training Eve3D occurs in two phases: first, we pre-train a vanilla 3DGS
model using [13]], which we use to render pseudo stereo views that feed into to predict dense
depth maps D* as priors. We use the pretrained model without fine-tuning, ensuring zero-shot
generalization with no overlap between its training data and our evaluation datasets. We employ
a left-right consistency check with a 3-pixel threshold to estimate confidence masks M€°. We set
Tjoint to 7000, introduce depth prior supervision after the first 500 iterations, and apply local bundle
adjustment from the beginning of training. We also built the Eve3D-fast variant, reducing the total
iterations from 30k to 5k and setting Tjo:n: to 1000. Following PGSR [6]], we set A\g, = 0.015,
As = 100.0, and A\, = 1.0. For our proposed losses, we use Aprior = 0.05, Apyy = 0.05, and
Aive = 0.15. These hyperparameters remain fixed across all datasets without tuning. Finally, we use
K = 4 neighboring views for local bundle adjustment across all experiments.

4.2 Evaluation Against State-of-the-Art

Tanks and Temples. The Tanks and Temples dataset collects scenes in a surround manner,
comprising six diverse environments that include both indoor and outdoor scenarios with varying
scales and lighting conditions. Tab. [T] presents our quantitative evaluation based on F1-score (the
higher the better). Eve3D achieves superior performance with an average of 0.58, outperforming
both implicit methods and other explicit approaches. Our method achieves the highest ranking in five
scenes (Barn, Caterpillar, Courthouse, Meeting Room, and Truck) and ranks second in one scene
(Ignatius). The most significant improvements appear in challenging scenarios: Eve3D achieves an
F1 Score of 0.46 in Meetingroom (compared to 0.33 from PGSR) and 0.35 in Courthouse (compared
to 0.28 from the best competitors). Despite these substantial quality improvements, Eve3D (trained
for 30K iterations) maintains a reasonable 1.2-hour total training time (including 3DGS pretraining,
stereo rendering, and depth prediction) — significantly faster than implicit methods (>24h) while
delivering superior reconstruction quality. Our Eve3D-fast variant, trained for only 5K iterations
(20 minutes total time), still achieves second-best reconstruction quality with an average F1-score of
0.56, setting an unprecedented trade-off between accuracy and speed. Fig. [3]shows Eve3D addresses
standard 3DGS limitations in scenes with varied lighting and complex architecture, producing more
accurate flat surfaces and detailed structures in both indoor and outdoor settings.



Table 3: Quantitative Comparisons of Novel View Synthesis on the Mip-NeRF360 Dataset. =
s indicate the absolute, second, and third bests, respectively.

Outdoor Scenes Indoor Scenes
PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |
NeRF 21.46 0.458 0.515 26.84 0.790 0.370
Deep Blending 21.54 0.524 0.364 26.40 0.844 0.261
Instant NGP 22.90 0.566 0.371 29.15 0.880 0.216
MERF 23.19 0.616 0.343 27.80 0.855 0.271
BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258
MipNeRF360 24.47 0.691 0.283 31.72 0.917 0.180
SuGaR [16] 22.93 0.629 0.356 29.43 0.906 0.225
3DGS [22] 24.64 0.731 0.234 30.41 0.920 0.189
2DGS 24.34 0.717 0.246 30.40 0.916 0.195
GOF [33] 24.76 0.742 0.225 30.80 0.928 0.167
PGSR 24.76 0.752 0.203 30.36 0.934 0.147
Eve3D (Ours) 24.99 0.758 0.203 30.42 0.930 0.157

Reference Image 2DGS [[18]] 51 PGSR [6] Eve3D (Ours)
Figure 5: Qualitative Comparison on the Mip-NeRF360 Dataset. Visual comparison of 3D meshes
reconstructed by our approach versus previous methods.

DTU. Tab. 2] shows our Chamfer Distance evaluation (lower is better) on DTU [20]. Eve3D achieves
the best average performance with a score of 0.48, outperforming both the best implicit method (Neu-
ralangelo at 0.61) and the previous best explicit approach (PGSR at 0.52). Our method demonstrates
remarkable consistency, achieving the best performance in any scenes except one, where it is the
second-best. Importantly, our method maintains an efficient 15-minute total training time (including
all preprocessing steps), comparable to vanilla 3DGS while delivering largely superior reconstruction
quality. Qualitative comparisons in Fig. ] show that while existing 3DGS methods produce good
object meshes, they struggle with sparse viewpoints and inconsistent multi-view images. Our method
enhances robustness in these difficult scenarios, yielding more complete, detailed meshes with better
preserved fine structures.

Mip-NeRF360. For validating rendering quality, we evaluate on the Mip-NeRF360 dataset [2]
following 3DGS’s standard protocol. Tab. [3] shows our results using standard metrics. Eve3D
achieves excellent synthesis across outdoor and indoor scenes. For outdoor scenes, Eve3D delivers
best performance on all metrics: PSNR (24.99), SSIM (0.758), and LPIPS (0.203), outperforming
both NeRF-based approaches and recent 3DGS methods. In indoor scenes, instead, our method
achieves the second-highest SSIM (0.930) and LPIPS (0.157) scores, while maintaining competitive
PSNR (30.42, third-best after MipNeRF360 and GOF). This demonstrates that our geometry-aware
optimization also enhances rendering quality. Fig. [5| further highlights this qualitatively.

4.3 Ablation Study
We ablate the key components of Eve3D on the Tanks and Temples dataset in Tab. 4]

Single-view Prior Loss. Due to the lack of explicit geometric constraints, the baseline model
struggles to reconstruct accurate surfaces relying solely on RGB supervision. When a single-view
depth prior is introduced to constrain the rendered depth and normals of 3D Gaussians, the surface
reconstruction performance improves from 0.340 to 0.463. We also ablate the use of single-view prior
loss in a joint optimization setting, where the prior depth maps are treated as learnable parameters.
This leads to a further improvement from 0.523 to 0.539. Please refer to the supplementary material
for experiments using different types of single-view priors derived from other vision models.
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Figure 6: Qualitative Mesh Comparison. Results without (w/0) and with (w/) joint optimization.

Local Bundle Adjustment. Local bundle ad- Table 4: Component Contribution. Evaluation of
Justment applies explicit multi-view consistency each module’s effect on reconstruction quality.
constraints on the rendered depth and prior
depth maps. Solely Wlth 10C3.1 bundle adjust- Single-view  Local Bundle Joint Evaluation
ment, the performance is improved significantly ~_PriorLoss  Adjustment Optimizaton PT RT FLT
from 0.340 to 0.523. In this configuration, prior 0297 0418 0340

i Vi ; . v 0431 0519 0463

depths gullde the inu}lztl Vlle.W c'or'1s1sten'cy'but. re Y y oA 03 o4
main non- earnz}b e. Enabling joint optimization, % 0483 0594 0523
which treats priors as learnable parameters D, v v 0504  0.605  0.539
yields further improvement from 0.523 to 0.539, v v 0531 0.595 0.553
v v 0553 0631 0.581

demonstrating that allowing the model to refine
priors through backpropagation enhances both
prior quality and 3DGS reconstruction. When using both single-view prior loss and local bundle
adjustment, jointly optimizing 3DGS and depth priors also has significant effects, improving the F1
score from 0.553 to 0.581.

Joint Optimization. We analyze the impact Table 5: Component Contribution — Joint Opti-

of each joint optimization component in Tab[5} mization. Evaluation of each module’s effect.
The local bundle adjustment pre-training plays

an important role in initializing multi-view con- Methods Pt Rt FIt
sistent priors; removing it leads to a performance Joint Optimization (Full) | 0.553 0.631 0.581
drop from 0.581 to 0.574. Disabling the confi- w/o LBA Pre-training 0.549 0.618 0.574
dence mask update causes a slight drop to 0.578, ~_W/o Confidence Mask Update | 0.552  0.626 0.578

highlighting the benefit of including more prior

regions—when validated by geometry checks—during joint optimization. Fig[6]compares results
with and without joint optimization. Jointly optimizing Gaussians and priors enables reconstruction
of fine details, while disabling it leads to over-smoothed surfaces due to excessive reliance on prior
supervision. Furthermore, this joint strategy is also especially effective for recovering geometry
details that are very ambiguous from single-view visual clues, such as the dark areas in the Truck.

In Tab. 6] we compare the FoundationStereo [44] prior depths before and after joint optimization with
Eve3D. We evaluate depth accuracy on the Tanks and Temples dataset using ground-truth depth maps
provided by the RobustMVD benchmark. Among the four scenes available in RobustM VD, we use
the three that overlap with our experimental setup: Barn, Courthouse, and Ignatius.

Since the camera poses estimated by COLMAP are not aligned with the ground-truth poses—leading
to inconsistencies in depth scale—we perform mesh-to-mesh alignment between the reconstructed
and ground-truth geometry to obtain accurate scaling and alignment information. We then compute
the relative depth error to quantify performance.

As shown in the comparison, in all evaluated scenes, the Eve3D rendering results consistently
outperform the initial priors in depth accuracy. Furthermore, our proposed joint optimization strategy
improves the accuracy of the initial depth priors.




Table 6: Impacts of Joint Optimization. We evaluate the accuracy of the learned depth priors before
and after joint optimization using ground-truth depth maps from the Tanks and Temples dataset,
provided by the Robust Multi-view Depth (RobustMVD) benchmark [36]. Relative error rates are
reported to quantify the improvement in depth estimation.

Methods Barn (%) Courthouse (%) Ignatius (%)
FoundationStereo [44] 1.84 12.25 1.43
Optimized FoundationStereo 1.51 11.96 1.00
Eve3D Depth 1.48 11.79 0.80

Prior Multi-view Consistency Prior Multi-view Consistency
T

w/o Joint Optimization w/ Joint Optimization

Figure 7: Visualization of the multi-view consistency without and with the joint optimization.
The consistency of current-view depth priors is measured by computing the pixel-wise reprojection
differences with the eight nearest neighbor views, followed by a consistency measurement using
an exponential decay function, exp(—d), where d denotes the reprojection error. This weighting
emphasizes geometrically consistent regions and suppresses unreliable estimates. Joint optimization
significantly improves the multi-view consistency.

Additionally, in Fig[7] we highlight another key property of the priors: multi-view consistency.
While initial priors provide reasonable but coarse estimates of depth and normals, they often exhibit
inconsistency across different viewpoints. This inconsistency introduces noise, which can degrade the
quality of supervision during Gaussian optimization. With our proposed joint optimization strategy,
the multi-view consistency of priors is significantly improved, resulting in more stable and accurate
supervision signals.

5 Conclusion

We presented Eve3D, a novel framework for dense surface reconstruction based on 3DGS. Our
approach jointly optimizes both self-derived stereo depth priors and the 3DGS representation, estab-
lishing a mutually beneficial relationship in which each component improves the other. Our local
bundle adjustment strategy ensures global consistency across view-overlapping frames, effectively
compensating for the local supervision limitations inherent in 3DGS. Extensive experiments on Tanks
& Temples, DTU, and Mip-NeRF360 demonstrate that Eve3D achieves state-of-the-art performance
in both surface reconstruction and novel view synthesis, while training in as little as 15-20 minutes
for our fast version, and ~1 GPU hours for our base approach.

Limitations. Eve3D sets a new state-of-the-art, yet with some trade-offs. Its primary constraint
is the reliance of a vision foundation model for stereo depth estimation. This choice is motivated
by the unpaired accuracy of the estimated depth priors compared to alternative monocular [48]] or
multi-view stereo [19] solutions, as discussed in the supplementary material. However, it requires
rendering stereo images from the model itself — an overhead that could be avoided if a multi-view
stereo foundation model could achieve comparable accuracy.
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